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Appendix 1. Calculation of selection intensity from the  
proportion selected individuals. 

In order for the following procedure to work we need to assume that the selection 
criterion is normally distributed. (This is not a strictly valid assumption in all 
situations, e.g., when the candidates are the retained individuals from a previous 
step of selection.). We also have to assume truncation selection, i.e. all individu-
als above (or below) a certain value are retained, they get equal number of off-
spring, and all other individuals are discarded. This is not always the case in prac-
tice because individuals which should have been selected might be discarded due 
to some additional information about them and others, not qualified according to 
the selection criterion might be selected owing to some other reason. In such a 
situation, the point where the distribution of selection criteria for the candidates is 
truncated into selected and not selected is consequently not distinct. An approxi-
mate truncation point can however be found from the proportion selected. 
 
Figure 1 illustrates the situation where a upper proportion p is selected according 
to a selection criterion X. Note that X can be any selection criterion, e.g., a pheno-
typic value, a selection index based on information on several traits and sources 
of information, or a predicted breeding value from a mixed linear model. In Fig-
ure 1 the variable X is transformed to a standardized variable x where 

( ) /Xx X Xμ σ= − , i.e. a variable with mean zero and standard deviation equal to 
unity. The purpose of the standardization is to enable use of the standardized 
normal curve as reference distribution. 
 

Figure 1. Graphic illustration 
of the calculation of selection 
intensity (i) from the proportion 
selected (p) for a standardized 
selection criterion x. 
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The selected fraction p corresponds to a truncation value xo, above which all indi-
viduals are selected. We now need to find the selection differential in terms of the 
x-scale, being the same as the mean of x for the fraction above xo. The average is 
found as a weighted mean of the x-values between xo and , using the “fre-
quency” or density of each possible x-value as weights: 

∞
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The result turns out to be very simple, i.e. the ratio of the normal density function 
or “height of the normal curve”, z, at the truncation value and the proportion p 
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that is selected. The standardized selection differential obtained here is called the 
selection intensity and it is the selection differential of the selected group ex-
pressed in standard deviation units of the selection criterion.  
 
Values of z can be calculated from the normal density equation for a given 
threshold value x0: 

 
2
0

0
1( ) exp( )

22
xz f x

π
= = −  [2] 

and selection intensity can be calculated from [1].  
 

A more common approach to calculate selection intensity values is to use tabu-
lated values of i for various proportions selected. One such tabulation is given in 
Table 1.  
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Table 1. Truncation point ( 0x ) and selection intensity (i) for different proportions 
selected (p in %) in large samples. Based on Falconer and Mackay (1996) 
 
p (%) 0x  i  p (%) 0x  i  p (%) 0x  i 

0.01 3.719 3.960  1.0 2.326 2.665  16 0.995 1.521 
0.02 3.540 3.790  1.2 2.257 2.603  17 0.954 1.489 
0.03 3.432 3.687  1.4 2.197 2.549  18 0.915 1.458 
0.04 3.353 3.613  1.6 2.144 2.503  19 0.878 1.428 
0.05 3.291 3.554  1.8 2.097 2.459  20 0.842 1.400 
0.06 3.239 3.507  2.0 2.054 2.421  21 0.806 1.372 
0.07 3.195 3.464  2.2 2.014 2.386  22 0.772 1.346 
0.08 3.156 3.429  2.4 1.977 2.353  23 0.739 1.320 
0.09 3.121 3.397  2.6 1.943 2.323  24 0.706 1.295 
0.1 3.090 3.367  2.8 1.911 2.295  25 0.674 1.271 
0.12 3.036 3.313  3.0 1.881 2.268  26 0.643 1.248 
0.14 2.989 3.273  3.2 1.852 2.243  27 0.613 1.225 
0.16 2.948 3.234  3.4 1.825 2.219  28 0.583 1.202 
0.18 2.911 3.201  3.6 1.799 2.197  29 0.553 1.180 
0.20 2.878 3.170  3.8 1.774 2.175  30 0.524 1.159 
0.22 2.848 3.142  4.0 1.751 2.154  31 0.496 1.138 
0.24 2.820 3.117  4.2 1.728 2.135  32 0.468 1.118 
0.26 2.794 3.093  4.4 1.706 2.116  33 0.440 1.097 
0.28 2.770 3.070  4.6 1.685 2.097  34 0.413 1.078 
0.30 2.748 3.050  4.8 1.665 2.080  35 0.385 1.058 
0.32 2.727 3.030  5.0 1.645 2.063  36 0.359 1.039 
0.34 2.706 3.012  5.5 1.598 2.023  37 0.332 1.020 
0.36 2.687 2.994  6.0 1.555 1.985  38 0.306 1.002 
0.38 2.669 2.978  6.5 1.514 1.951  39 0.279 0.984 
0.40 2.652 2.962  7.0 1.476 1.918  40 0.253 0.966 
0.42 2.636 2.947  7.5 1.440 1.887  41 0.228 0.948 
0.44 2.620 2.932  8.0 1.405 1.858  42 0.202 0.931 
0.46 2.605 2.918  8.5 1.372 1.831  43 0.176 0.913 
0.48 2.590 2.905  9.0 1.341 1.804  44 0.151 0.896 
0.50 2.576 2.892  9.5 1.311 1.779  45 0.126 0.880 
0.55 2.543 2.862  10 1.282 1.755  46 0.100 0.863 
0.6 2.512 2.834  11 1.227 1.709  47 0.075 0.846 
0.65 2.484 2.808  12 1.175 1.667  48 0.050 0.830 
0.70 2.457 2.784  13 1.126 1.627  49 0.025 0.814 
0.75 2.432 2.761  14 1.080 1.590  50 0.000 0.798 
0.8 2.409 2.740  15 1.036 1.554  60 -0.253 0.644 
0.85 2.387 2.720      70 -0.524 0.497 
0.90 2.366 2.701      80 -0.842 0.350 
0.95 2.346 2.683      90 -1.282 0.195 
1.0     2.326 2.665      95 -1.645 0.109 
 
To calculate values of i for p greater than 50%:  
Take x0 and i tabulated for (1-p), give x0 a negative sign,  
multiply i by (1-p)/p retaining the positive sign  
E.g. for p =80%, take x0 for 20% and change sign (-0.842),  
and multiply 1.4(1-0.8)/0.8= 0.35 
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Appendix 2. Calculating selection intensity for several 
fractions 

It is not uncommon that several fractions are selected for different purposes from 
the same population. For instance, a top fraction p1 of tested sires may be chosen 
for intensive use in an artificial insemination program while a fraction p2 below 
them is selected as natural service sires within individual farms. With the symbols 
given in Figure 2 the selection intensity for the top fraction is: 
 

 1
1

1

zi
p

=  [3] 

and the selection response can be predicted as described previously. 
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Figure 2. Graphic illustration 
of selection from two top frac-
tions. 
 

We can calculate the selection intensity i2 for the second fraction p2 from the se-
lection intensity, i, for the two top fractions together (which can be found from 
Table 1 for a fraction (p1+p2)). This selection intensity can actually be thought of 
as the weighted mean of the selection intensities i1 and i2 of the two fractions 
separately, weighted by their respective relative proportions, i.e.: 
 

 1 2
1 2 1 1

1 2 1 2

p pi i i P i
p p p p

= × + × = +
+ + 2 2P i  [4] 

 
where P1 = p1/(p1 + p2) and P2 = p2/(p1 + p2) are the weights or relative sizes of 
the two fractions. Solving for i2 gives: 

 1 1
2

2

i P ii
P
−

=  [5] 

and the selection response can be predicted as before.  
 
Example: Assume that both top proportions constitute 38%, and the top propor-
tion p1=15% (i.e. p2=23%). From, i=1.002 and i1=1.554, then: 
 

 2

0.151.002 1.554
0.38 0.6420.23

0.38

i
−

= =  
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Appendix 3. Selection intensity in small samples 

The values in Table 1 are exactly correct only when the number of individuals 
among which to select is large (at least 500). When few individuals are measured, 
the probability of finding extreme animals is decreased, and thus a certain propor-
tion selected will deviate less from the mean than when selecting the same pro-
portion from a large population.  
 
If we assume that we select the top ten percent from a large population we would 
expect a selection intensity of 1.755 (Table 1). However, if we only have 100 
individuals measured and select 10 of those (i.e. 10%) we would only get a selec-
tion intensity of 1.73, and if we selection the best one of 10 measured individuals 
i=1.539. If we have few individuals to select among, the effect can be a quite 
drastically reduced selection intensity, compared with that computed from Table 
1, and we should be careful not to overestimate the expected genetic gain from the 
selection. 
 
Tables for selection intensity in small samples are found in e.g. Becker (1984) or 
from order statistics (Fisher and Yates, 1963). A rough approximation given by 
Henderson, is to take i for the large sample size (e.g. Table 1) and subtract 0.25/n, 
where n is the number of individuals selected, i.e.: 
 

 *
small sample large sample

0.25

Number of individuals selected
i i= −  

 
If we do that for the two examples above we get 1.73 and 1.505 (cf. 1.73 and 
1.539). 
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Appendix 4. Calculation of selection response in each 
breeding goal trait 

The general equation ( TI Ti r σ ) gives the response in the total breeding goal. 
Sometimes it is, however, interesting to get the response in each breeding goal 
trait separately, for instance to check whether the response in each trait is favour-
able. We can calculate that by regressing each breeding goal trait (j) on the selec-
tion response in the index: 
 

 / 2

cov( , )
cov( , ) /

j

j
gj T I I I j

I

I T
T b i i I T i Iσ σ

σ
Δ = = = σ

=

 [6] 

 
Now, the covariance between the index and a certain breeding goal trait j can be 
written as: 
 
 cov( , ) cov( ' , ) 'cov( , ) 'j j jI T T T= = jb X b X b g  [7] 
 
where b’X is the vector of index weights multiplied by the column vector of in-
dex traits and cov( , )jTX (the covariances between index traits and the breeding 
goal trait Tj) is that column of the matrix G (from selection index equations 
Pb=Gv) which corresponds to trait j, gj. Thus equation [6] becomes: 
 
 ' /gj jT i IσΔ = b g  [8] 
or: 
 ' / Ii σ=gΔT b G  [9] 
 
where  is a row vector of genetic responses in each of the m breeding goal 
traits. 

gΔT

 

Appendix 5. Genetic gain with different number of progeny 
within path  

In dairy cattle both young bulls (bulls that are subjected to progeny testing) and 
proven bulls may produce daughters. However, the young bulls will only get one 
batch of daughters, whereas the selected bulls also will get a second batch, some 
years after. In this situation we can calculate a weighted average of the two frac-
tions of bulls producing daughters (path SD), both for the selection response and 
the generation interval: 

   (1 )SD YB YB YB PBT p T pΔ = Δ + − ΔT

L

and 

  (1 )SD YB YB YB YBL p L p= + −

where YBp  is the proportion of daughters produced by young bulls (with YBTΔ  

and ) and (1 – YBL YBp ) the proportion produced by proven bulls (with  and 

). In this example we can assume that 

PBTΔ

PBL YBTΔ =0.  
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Appendix 6. Efficiency of indirect versus direct selection 

In the main text we have seen that the response to indirect selection is: 
 

1 12 12 / 1 2I g TIT r i r TσΔ =  [10] 
 
where trait 2 is the trait we want to improve by selecting on trait 1. If we instead 
select directly on trait 2 the direct response to selection is: 
 
 

222 2 TI TT i r σΔ =  [11] 
 
The efficiency of indirect response relative to the direct response is then: 
 

 12 2 121

2

1

2 2

12 /

2 2 2

g TI T g TI

TI T TI

r i r r i rT
T i r i r

11 Iσ

σ
Δ

= =
Δ

 [12] 

 
If we for simplicity assume that we can select as intensely indirectly as directly 
(i.e. ) then the efficiency is dependent on the genetic correlation between 
the two traits and the ratio of accuracies of indirect and direct selection. If the 
genetic correlation is high and the accuracy of indirect selection is higher than 
that for direct selection, indirect selection can be more efficient that direct selec-
tion. 

1i i= 2

2
 
If we have selection on phenotypic values (when 2

TIr h= ) the efficiency be-
comes: 
 

 1 122 / 1 1

2 2 2

P gT r i h
T i h

Δ
=

Δ
 [13] 

 
where h1 and h2 are the square root of the heritabilities for the indirect and direct 
traits, respectively. 
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Appendix 7. Selection and change in genetic variation 

To have a meaningful discussion on how selection influences genetic variation, 
we first need to determine what kind of genetic model we assume. The two main 
models are called the finite locus model and the infinitesimal model. 
 
The finite locus model 
The finite locus model is the one commonly used in traditional population genet-
ics, and the simplest version is the single-locus model. This is fully described in 
population genetics texts, e.g. in Falconer and Mackay (1996), and here we will 
just show the most important features.  
 
We assume a locus with two alleles, A1 and A2, with allele frequencies in the 
population of p and q, respectively. The genotypes A2A2, A1A1, and A1A2 have 
genotypic values –a, a, and d, respectively. If we have Hardy-Weinberg equilib-
rium the genotype frequencies are q2, p2, and 2pq. The genotypic values are all 
expressed as deviations from the average of the two homozygotes. If d is not 
equal to zero, there is dominance for the trait (Figure 3). 
 
 

 
 
Effects on additive genetic variance 
The (additive) genetic variance in the finite locus model is a function of the gene 
frequencies and the genotypic values: 
 
 2 2 [ ( )]A

2pq a d q pσ = + −  [14] 
 
If selection is changing the gene frequencies, then the genetic variance is also 
changing with selection. If we also have an environmental influence on the trait, 
then heritability will also change with selection. In Figure 4 the change in additive 
genetic variance with changing gene frequencies is described for two situations: 
complete dominance or no dominance (d=1 or 0).  
 

Figure 4. Illustration of 
the additive genetic vari-
ance as a function of 
gene frequency p for the 
favorable allele. Two 
situations: complete or 
no dominance. 
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If there is no dominance, the additive genetic variance is largest at the intermedi-
ate gene frequency (i.e. p=q=0.5). This can be seen in equation [14], which when 
d=0 reduces to 2pqa2, which is at maximum when p and q are equal1. If there is 
dominance, then the maximum is not at p=0.5 but at lower values (in the graph at 
p=0.25). Regardless of whether there is dominance or not, one can see that as the 
gene frequency approaches zero or one, the genetic variance goes to zero. Equally 
interesting is that, depending on the actual gene frequency at the beginning of 
selection, selection can actually increase the genetic variance, even in the single 
locus model. If we have more than one locus affecting the trait, and the gene fre-
quencies are at different point at the start of selection, and the genotypic effects 
differ between the loci, the change in genetic variance with selection might be 
quite unexpected.  
 
Previously, we have seen that we predict selection response by using the heritabil-
ity; in the simplest case, if we select on phenotypes we predict the response as 
h2S. Strictly speaking, this equation only holds for one generation of selection, 
and if we have the finite locus model, the same initial heritability may not give 
the same long-term response, because the change in genetic variance may be dif-
ferent. This is illustrated in Figure 5, where various numbers of loci are assumed.  

 
In the situation with 10 loci all starting at intermediate frequencies, the genetic 
variance is soon depleted. When 25 loci are affecting the trait, the response is 
continuing for a longer period, but slows down after some generations. For a 
situation where 250 loci, all with equal effects are affecting the trait, we have 
more or less constant and continuous selection response. When there are 5 loci 
which have large effect on the trait (starting frequency of favourable allele 0.25), 
and 125 loci with small effects, the response is larger than for the situation with 
250 loci with small effects for some generations but then (as the major genes 
move closer to fixation) the response slows down.   
 
Another complication can arise when the trait is influenced by dominance. If we 
assume complete dominance of the favorable allele and a high gene frequency of 
that allele, upward selection may not give any appreciable selection response 
(Figure 6). This could lead us to believe that we have reached a selection plateau 
owing to depleted genetic variance. However, if we select downward instead, we 
can see a fast selection response, showing that there indeed is additive genetic 
variation. 

                                                      
1 This can be seen by searching for the maximum of pq by differentiating this with respect 

to e.g. q: 
2

2 ( )(1 ) ; 1 2 0; 0.5q qpq q q q q q q
q

∂ −
= − = − = − = =

∂
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complete dominance of 
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Adapted from Walsh & 
Lynch (2000). 

This phenomenon can intuitively be explained as follows. The genotypes A1A2 
and A1A1 are indistinguishable from each other if we look at their genotypic val-
ues. That means that if you select only individuals with the high genotypic values 
you get both alleles in the proportion they occur in the population. If we assume 
Hardy-Weinberg equilibrium for simplicity, this would mean that 0.82 = 0.64 are 
A1A1 and 2×0.2×0.8 = 0.32 are A1A2. This means that about 17% of the alleles 
selected are A2 alleles (compared with 20% before) even though we tried to select 
only the A1 allele. On the other hand, if we select only the individuals with the 
low genotypic values, A2A2, we will only select A2 alleles. Now, with selection 
on phenotypic rather than genotypic values (with environment blurring the pic-
ture), the response will not be as large in any direction, but the same logic still 
applies. This is the same reasoning which explains why it is so hard to eradicate a 
recessive allele from the population, the recessive allele will always hitch-hike on 
the other allele in the heterozygote.  
 
One phenomenon that may help avoid fixation is if there is over-dominance, i.e. if 
the heterozygote is better than the best homozygote. This is also called heterzy-
gote advantage. If this is true for a locus, gene frequencies will stay at intermedi-
ate levels, unless the locus becomes fixed by drift. 
 
Effects on genetic covariance 
In the previous examples we have seen what happens with the genetic variance 
when selection is operating – an equally interesting question is what happens to 
the genetic covariance between two traits, especially when we are trying to im-
prove both traits? 
 
In Figure 7 five types of loci are shown which all are pleiotropic, i.e. they influ-
ence both traits. Locus 1 has two alleles, one with positive effects on both traits 
(++) and one allele with negative effects on both traits (--). Locus 2 has one ++ 
allele but one which acts increasing on trait 1 and decreasing on trait 2 (indicated 
by +-). And so on. All of these loci (and there may be several within each type) 
contribute both to the variance of each trait (the + and – for each trait can be 
thought of as a and –a of Figure 3) and to the covariance between them2. When 
an allele has an effect on both traits in the same direction (++ or --) this allele 
contributes to a positive covariance. When an allele has a positive effect on one 
trait and a negative effect on the other (+- or -+), it contributes to negative covari-
ance.  
 

                                                      
2 Remember that the covariance between x1 and x2 is : 1 1 2 2( )( ) /(x x x x n 1)− − −∑  
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Let us assume that when we start out (upper part of Figure 7) the combination of 
gene frequencies and allelic effects contributes to an overall covariance of zero3. 
As we select for increased value of both traits the following will happen. In locus 
1 and 2 we will favour the allele ++. After some generations these alleles will 
contribute mainly positive covariance, however, they will also become fixed 
rather quickly (especially in locus 1 where ++ is much better than --). When the 
alleles become fixed they contribute nothing to the genetic variance and covari-
ance.  
 
For loci of type 3 and 4, the road towards fixation is longer, especially compared 
with locus 1. As the favourable allele (+- or -+) increases in frequency, it will 
contribute to negative covariance, but eventually it will also be fixed.  
 
For locus 5, the situation is more difficult to predict. When we select for increased 
value for both traits, we will sometimes favour the -+ allele and sometimes the +- 
allele. The change in gene frequency towards fixation for either one of them is 
slow and hard to predict. It is possible that the alleles will stay at intermediate 
frequencies. While they still are unfixed, both alleles are contributing to a nega-
tive covariance, and if all other alleles (at other loci) are fixed, the total covari-
ance will be negative.  
 
So, the take-home message is: if we select for increased value for two traits, the 
genetic covariance between the traits will move towards negative values. In our 
description above we started out assuming a covariance of zero, this is as you 
probably have understood by now, not necessary. It is important, however, to 
remember that the expectation is that the covariance will move towards negative 
values: that means that if we start out with a genetic correlation of 0.5, the corre-
lation (and the sign of the correlation depends on the covariance) will not neces-
sarily have become negative after a few generations of selection, perhaps it has 
gone down to 0.4. But it has moved downwards, towards negative values! 
 
When selection is for increased value of a complex trait (say, some fitness-related 
trait) which consists of a combination of subtraits (e.g. number of born and viabil-
ity of the offspring), there might arise a situation where the subtraits become so 
negatively correlated that we seem to have reached a selection plateau; even if we 
select the best individuals to become parents we make no progress. However, 
there may still be substantial genetic variation left in the subtraits.  
 
Other phenomena affecting genetic variance 
The description above has focused on the effect of selection on genetic 
(co)variance, but there are also other phenomena that affect the overall outcome. 
 
As you probably remember from population genetics, there are four “forces”  
                                                      
3 This is not a critical assumption, see later 
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incidence)? 
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Figure 7. Illustration of 
five types of pleiotropic 
loci and how their gene 
frequencies change as a 
result of selection for 
increased value of the 
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affecting a population: selection, genetic drift, mutation, and migration. Genetic 
drift acts in a similar way as selection, inasmuch as it will also lead to fixation. 
However, whereas selection favours fixation of the desired alleles, drift is a 
purely random process.  
 
Mutation is naturally an extremely important process in an evolutionary context. 
It is also one force that prevents that the finite locus model always ends up at the 
dead-end of fixation. It has been shown that a balance between mutation and drift 
evolves in populations of a given size. In any given generation t the loss of ge-
netic variation due to drift is proportional to 1/2Ne where Ne is the effective popu-
lation size, but at the same time new additive genetic variation due to mutation 
( ) is created : 2

mσ

 
1

2 21(1 )
2A A

e
t tN

2
mσ σ

−
= − +σ

/ 2 )

 [15] 

As the loss in genetic variation is proportional to what is left (the smaller the vari-
ance left becomes, the smaller the loss due to drift) but the mutational variance is 
constant, there comes a point where the loss is equal to the newly created vari-
ance. This can also be shown mathematically by expanding the recursive equation 
[15] all the way back to the starting generation: 
 
 2 2 2 2

( ) (0)2 2 exp(A t e m A e mN N tσ σ σ σ⎡ ⎤≈ + − −⎣ ⎦ eN

2

 [16] 

 
The development of genetic variance over time is given in Figure 8 (a graphic 
description of equation [16]). The exponential part of [16] will go towards zero, 
the quicker the smaller the population size, and the equilibrium genetic variance 
will be attained faster for small populations. That variance will be: 
 
 2

, ( ) 2A m Ne mσ σ∞ ≈  [17] 
 
With an assumed 2

mσ =0.005 (in relation to environmental variance 2
eσ =1) and an 

effective population size of 100 this equilibrium genetic variance becomes 
2×100×0.005=1.0.  
 
The interpretation of equation [17] is that the larger the population, the larger 
influence will mutation have on creating additive genetic variance that can be 
exploited by selection.  
 

Figure 8. Development of addi-
tive genetic variance as a bal-
ance between genetic drift and 
mutation. 
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Finally, a few words about migration. Immigration of unrelated individuals can 
be a powerful way of counteracting inbreeding and genetic drift. Actually, in an 
ideal population, one immigrant every or every other generation is enough to keep 
the populations from becoming totally inbred. Strangely enough, this is regardless 
of population size! One way to explain this is that in a large population one indi-
vidual has a small impact on the total population, but the risk that the genes of 
this individual will be lost due to drift is small. In a small population, one indi-
vidual would make a larger impact if selected, but the risk of losing those genes 
due to drift is larger. These two counterforces – migration and drift – actually 
balance each other perfectly.    
 
 
The infinitesimal model 
Another very common genetic model is the so-called infinitesimal model. This 
model was initially introduced by R.A. Fisher in 1918. The assumptions are that 
there are an infinite number of genes. As the number of genes goes to infinity, the 
effect of each gene goes towards zero. Thus the assumption is also that all genes 
have identical and infinitesimal (i.e. very close to zero) effects. As the number of 
genes is infinitely large and each effect is infinitesimally small, selection will not 
change the gene frequency (or at least we can ignore that change as it is infini-
tesimally small). 
 
In this model the genotypic values become normally distributed. This is because 
of the assumption of many loci contributing to the total genotypic value. If we 
also have a normally distributed environmental component, the phenotypic values 
are also normally distributed. If we select a proportion (p) of the animals we can 
calculate the phenotypic variance of the selected animals ( ) as:   2

*Pσ
 
  [18] 2 2

* (1 )P P kσ σ= −
 
where 2

Pσ  is the phenotypic variance before selection, and k e i is 
the selection intensity and x is the truncation point as deviation from the mean 
zero in a normal distribution with variance equal to 1 (Figure 9).  

( )i i x= − , wher
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Figure 9. Illustration of trunca-
tion selection on normally dis-
tributed phenotypic values with 
mean zero and variance 1. Indi-
viduals above a value x (here 
1.0) are selected. They have a 
mean of i (selection intensity) 
and constitute a proportion p of 
all individuals. 

The parameter k in equation [18] describes the proportional decrease in pheno-
typic variance as a result of selection, and the smaller proportion selected (the 
higher selection intensity) the higher k (Figure 10). 
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So, the phenotypic variance is reduced to 2
*Pσ  but all of that reduction is not seen 

at the genetic level. The additive genetic variance among the selected individuals 
(parents) becomes: 
 
  [19] 19] 2 2 2

* (1 )A A h kσ σ= −
  
In the creation of gametes to create the next generation, half of the loss in additive 
genetic variance is restored by the random recombination of alleles (Mendelian 
sampling), so the genetic variance in the offspring generation becomes: 

In the creation of gametes to create the next generation, half of the loss in additive 
genetic variance is restored by the random recombination of alleles (Mendelian 
sampling), so the genetic variance in the offspring generation becomes: 
  

  2 2 2
*

1(1 )
2A A h kσ σ= −  [20] 

 
As we have seen in the compendium Genetic Evaluation we can write the breed-
ing value as:  
 

  i s d MS Msi di
1 1

SA + A +A +A
2 2

K

=A  

 
where As and Ad are the breeding values for the sire and dam, respectively, and 
AMSsi and AMSdi are the Mendelian sampling terms. The Mendelian sampling terms 
are unaffected by selection because they are restored every generation; together 
they make up 50% of the original additive genetic variation. This is inherent in 
the infinitesimal model, as we assume that selection does not change gene fre-
quencies.  
 
The reasoning behind the decrease in genetic variance with selection in the infini-
tesimal model is usually attributed to Sir Michael Bulmer (Bulmer, 1971), and 
therefore this phenomenon is often referred to as the “Bulmer effect”. The rea-
soning goes as follows. 
 
Assume that the genotypic value for a trait is composed of the sum of genotypic 
values from an infinite number of loci: 

 G = G1 + G2 + … 
 
The genetic variance then becomes: 

  [21] 2 2 2
1 2 12 13G G G G Gσ σ σ σ σ= + + + + +K
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In a random mating population (which we assume we have at the start) there is no 
association between the genotypic value at one locus with that at another locus, 
i.e. all the covariances are zero and the total variance is just the sum of the vari-
ances at each separate locus. If we only care about the distribution of the geno-
type combinations at any two loci (haplotypes, e.g. AB, ab, Ab, aB), we can say 
that there is linkage equilibrium, because these haplotypes occur in the frequency 
we would expect from their respective gene frequencies. This term is also called 
joint equilibrium or gametic phase equilibrium. If you want to refresh your mem-
ory on linkage equilibrium and disequilibrium, have a look in appendix 8.  
 
Now, when we have selection on the total genotype (or the phenotype) we will 
create linkage disequilibrium between loci, and as a result we will also create 
negative covariances between loci. This means that the total sum in [21] will be 
lower than before and the genetic variance ( 2

Gσ ) has decreased.  
 
In the following we will try to explain why selection on the sum of two (or more) 
values creates a negative covariance. In Figure 11 (upper graph) 500 individuals’ 
genotypic values from two loci are plotted against each other. The assumption is 
that in each locus there are many alleles and thus many possible genotypic values. 
In the total population there is no covariance (nor correlation) between the geno-
typic values at the two loci – the points are scattered around the centre in a circle. 
If you select a point at the x-axis, say at +1.0, the points are equally spread with 

y = -0.5897x + 1.1986
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Figure 11. Illustration of the 
Bulmer effect. The upper 
graph shows the genotypic 
values from two loci plotted 
against each other. The as-
sumption is that in each locus 
there are many alleles and 
thus many possible genotypic 
values.  
 
In  the lower graph only the 
selected individuals are 
shown. If we try to summa-
rize these values with a line it 
has a negative slope, which 
indicates a negative covari-
ance between genotypic val-
ues at the two loci 
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respect to the y-axis. If there had been a negative correlation, one would have 
expected that values at the y-axis would be low (because x is above average). 
 
If we select on the sum of genotypic values and choose individuals with sum val-
ues greater than 1.0, we would choose individuals above the line drawn in the 
graph. Now, with respect to all points, these individuals are chosen because they 
have high values for both locus 1 and locus 2. Therefore, it might be natural to 
think that the correlation (and covariance) between these genotypic values is posi-
tive. However, if we take away the individuals that were not selected and only 
keep the “parents” we get the picture in the lower part of Figure 11. If we try to 
summarize these points by a regression line, we see that it has a negative slope, 
which indicates a negative covariance between genotypic values at the two loci.  
 
The above reasoning applies for directional selection and also for stabilizing se-
lection (when individuals around the mean are selected). However, with disrup-
tive selection, a positive covariance is created (Figure 12). 
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Figure 12. Illustration of 
various types of selection and 
their effect on covariance 
between genotypic values at 
different loci. 

 
 

The effect of selection on the genetic variance is quite fast, after the first two gen-
erations of selection there is hardly any change in genetic variance (Figure 13). 
The interesting thing is that if you stop selecting, the variance returns to the base 
population value again, as the linkage equilibrium is restored by half the amount 
for every generation of Mendelian sampling (Figure 13). This means that in the 
infinitesimal model, as opposed to the finite locus model, the lower genetic vari-
ance is not permanent, it only exists as long as you continue selecting! 
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Figure 13. Change in genetic 
variance owing to the Bulmer 
effect. Base population vari-
ance 0.5, selection for 10 
generations, thereafter random 
mating 
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Selection on two traits at the same time has a similar effect as in the finite locus 
model, the covariance between the traits moves in the negative direction (Figure 
14). However, in the same way as the genetic variance returns to its initial value 
after one has stopped selecting, so does the genetic covariance.  

G
en

et
ic

 c
or

re
la

-
tio

n

2 10 14 20 4 6 8 12 18 16 

-0.15

-0.13

-0.11

-0.09

-0.07

-0.05

-0.03

-0.01

Generation

Figure 14. Change in genetic 
correlation owing to the 
Bulmer effect. Base population 
correlation 0.0, selection for 10 
generations, thereafter random 
mating. 

 
 
What about the selection response? Is that affected by the changes in genetic vari-
ance owing to the Bulmer effect? Is the selection response permanent or does that 
also revert to the base population level? The answer to the last question is thank-
fully: No! The genetic level, after, say 10 generations of selection followed by 
random mating, stays at the level it was at generation 10 (Figure 15).  
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Figure 15. Change in genetic  
level as a result of selection, 
assuming the infinitesimal 
model. Selection for 10 genera-
tions, thereafter random mat-
ing. 

 
 
 
 
 
 
 
 
 
 

 

In Figure 15 it seems that the selection response per generation is constant for the 
first 10 generations. However, if we plot the response per generation we can see 
that this is not true – the selection response is higher the first generation owing to 
the higher additive genetic variance (and thus heritability) in the base generation 
(Figure 16).  

 

Figure 16. Change in selection 
response per generation over 
generations assuming an infini-
tesimal model. 
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Another factor that affects the change in genetic variation due to selection is 
whether the selected animals are mated randomly or assortatively. If the best 
males (among the selected) are mated to the best females (again of those selected) 
we have positive assortative mating. If the best males are mated to the worst of 
the selected females, we have negative assortative mating (Figure 17). 
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among the selected ani-
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As positive assortative mating contributes to positive covariance, the genetic vari-
ance is not decreased as much as for random mating. On the other hand, with 
negative assortative mating, the decrease in genetic variance is even larger than 
for random mating (Figure 18).  
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In accordance with the results for genetic variance, the genetic response to selec-
tion is also higher with positive assortative mating than with random mating or 
negative assortative mating (Figure 19).  
 

Figure 18. Change in genetic 
variance owing to the Bulmer 
effect for different types of  
mating. 
Base population variance 0.5, 
selection for 10 generations, 
thereafter random mating. 
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Figure 19. Change in genetic 
level as a result of selection, 
assuming the infinitesimal 
model, for different types of 
mating.among the selected 
animals.  
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Appendix 8. Linkage disequilibrium 

If we only look at one locus, we have the well-known Hardy-Weinberg equilib-
rium after just one generation of random mating, i.e. given that the allele frequen-
cies are p and q, the genotype frequencies are p2, q2, and 2pq, for the two homo-
zygotes and the heterozygote, respectively. However, such a quickly attained 
equilibrium does not appear if we look at more than one locus jointly.4

 
Suppose we start out with two populations, one which only consists of genotypes 
A1A1BB1B1B , and one which only consists of A2A2BB2B2B  individuals. If we allow 
these two populations to mate at random (i.e. not only cross them) then the out-
come would be as in Figure 20. 

  Gametes 
  A1BB1 A1BB2 A2BB1 A2BB2

A1BB1 A1A1 B1BB1   A1A2 B1BB2

A1BB2     

A2BB1     

   
   

   
   

G
am

et
es

 

A2BB2 A2A1 B2BB1   A2A2 B2BB2

 Figure 20. Outcome of mating of two “inbred” lines, consisting of only A1A1 B1BB1  
 and A2A2 B2B2B  individuals, respectively. Only gametes A1BB1 or A2B2B  are created. 
 

Given the two alleles at both loci, there are potentially 9 different genotypes, but 
only three of them will occur – the original two homozygotes and the “double” 
heterozygote A1A2BB1B2B . If these two alleles have effects on the same trait, this 
would look like there is only one gene controlling the trait.  
 
With continued random mating, the ”missing” genotypes will appear, as you see 
now gametes of type A1BB

                                                     

2 can be created from the heterozygote. If the two loci 
are linked the equilibrium will take longer to reach.  
 
The disequilibrium described above is called gametic phase disequilibrium or 
linkage disequilibrium. The latter name is shorter and more commonly used, but it 
has the disadvantage that one might believe that there need to be linkage for link-
age disequilibrium to exist. That is not the case, linkage disequilibrium can appear 
between loci that are on different chromosomes, thus with recombination fre-
quency of 0.5. 
 
As we have seen, linkage disequilibrium can be produced by intermixture of po-
pulations with different gene frequencies, but it can also be created by random 
drift in small populations and by selection. This is described in appendix 7.  
 

 
4 The description of linkage disequilibrium in this appendix is mainly based on Falconer 
   and Mackay  (1996, p 19-) 
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How quickly is linkage equilibrium attained? Let’s consider the two locus case 
again. We assume gene frequencies for A1 and A2 to be pA and qA, respectively, 
and corrspondingly pB and qB BB for B1 and B2. In Table 2 the equilibrium frequen-
cies of the gametic types are given together with some assumed actual frequen-
cies, r, s, t, and u. The population is in equilibrium if the gametes are only a func-
tion of the respective gene frequencies. 
 
We also need some measure of disequilibrium. Here we measure it as the devia-
tion of the actual frequency from the expected. It actually turns out that the devia-
tion (r - pApB) is the same as (u - qB AqBB), and that the other deviations have the 
same size but opposite sign. 
 

Table 2. Equilibrium and actual gametic frequencies for the two locus case. 

Gametic types A1BB1 A1BB2 A2BB1 A2BB2

Equilibrium frequencies  pA pBB pAqBB qApBB qAqBB

Actual frequencies r s t u 
Difference from equilibrium D -D -D D 
  

Anyway, let’s have a look at one of the gametic types, A1BB1 (the same reasoning 
applies to all of them). In the progeny generation of a random mating population 
this gamete may have been created in two ways:  

1. As a non-recombinant from the genotype A1BB1/AxBxB . The frequency for this 
occurrence is r(1-c), where c is the recombination frequency. The x subscript 
means any of the alleles could be present (also allele 1). 

2. As a recombinant from A1BBx/AxB1B . The frequency of chromosome A1BBx is pA 
and the frequency of AxB1 B is pB. So the frequency with which occurs this way is 
p

B

A pBBc. If we sum these two ways we get the new frequency of A1BB1: 
 
 r1 = r(1-c) + pA pBc = r - cD [22] B

 
and the new disequilibrium: 
 
 D1 = r1 - pA pB = r(1-c) + pB A pBBc - pA pB =  r(1-c) - pB A pBB(1-c) = 
 = (r - pA pB)(1-c) = D(1-c)  B

 
So, in the next generation the original disequilibrium has been decreased by a 
factor (1-c), where c is the recombination rate. For unlinked loci, this is 0.5, so 
disequilibrium is halved every generation. For closer linkage, the decrease is 
slower. In generation t the disequilibrium is : 
 
 Dt = D0(1-c)t

 
where D0 is the disequilibrium at the beginning of random mating (e.g. after se-
lection or intermixing of two populations).  
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